

Hydroacoustics and Biological Evaluation of Bridge Foundations

Smaller Bridges

The sealing

Summary of Topics

- Bridge components, foundation types and application
- Construction methods, biological pros and cons
- Principles of hydroacoustic impacts to fish
- Avoidance and attenuation
- Analysis
- Monitoring and reporting
- Research

- Superstructure: Bridge components that span end-to-end
- Substructure:

Columns and Bent Caps, Abutments

• Foundation: Piles and footings

Seismic Event Collapse

1989 Loma Prieta Earthquake, Magnitude = 6.9

1971 San Fernando Earthquake, Magnitude = 6.5

Caltrans Seismic Design Philosophy

- Bridges may suffer damage but are expected to remain standing.
- Columns are designed to deform.
- Footings (foundations) are to remain undamaged.

Seismic Design Criteria Manual

Sampling – Geotechnical Drilling

Substrate Sampling - Drilling

- Informs foundations design and construction methods
- Reduces the potential for unforeseen construction issues and environmental impacts
- Improves outcome of long-term bridge, foundation, and watershed performance

Soil and Rock Logging, Classification, and Presentation Manual

2010 Edition

State of California Department of Transportation Division of Engineering Services Geotechnical Services

Logging, Classification and Presentation

- 1. Field Sampling (geotechnical investigations),
- 2. Quality Check (field observations),
- 3. Laboratory Testing (refined description of sample), and
- 4. Preparing Boring Logs

Geotechnical Sampling

Caltrans Design Engineering Services, Structures – Transportation Laboratory 'Translab' (Sacramento)

- Innovative analysis and research laboratory for geology and materials engineering.
- Analysis and research expertise includes geology, materials engineering, geotechnical engineering, specialized testing, and field investigations.

Geotechnical Layer Analysis

- Boulders and Cobbles
- Pebbles: Very coarse, coarse, medium, fine, and very fine
- Sand: Very coarse, coarse, medium fine, and very fine,
- Silt: Coarse, medium, fine, and very fine, and
- Clay: Clay/silt boundary for mineral analysis

•	cove = log 2	ERSION E ec. (d in mm) e c. 0.001mm c c.			VERSION J ₂ (d in mm) = 0.001mm			ON E SIZE TEI			ZES	neters lins re size	Nu of g	mber grains	Sett Velo	tling ocity artz.	Threshold Velocity for traction			
φ	mm			actic a cima	wen	(worun, 1922)	, ind		gra	per	mg	20	°C)	cm	/sec					
-8-	-	-	256	- 10.1"	-	1	M No tandi	h No	diate atural nt to	N SS	- m	res 1971)	pa	46)	from 939)					
-7 -	- 10) 	128	- 5.04"	BC	(2-80) DEBLES	U.S. S. (U.S. S. Mesh		Interme of n equivale	Quart sphere	Sand	Sphe (Gibbs,	Cm/sec		(modified Hjuistrom,					
-6-	E	-	64.0 53.9	- 2.52*			-2 1/2"	- 2=					1		abovi					
-5-	-40	-	45.3 33.1 32.0	-1.26"		coarse	-1 1/2"	-1 1/2"						- 150						
Ĩ	-30	-	26.9 22.6 17.0	1,20		coarse	- 1.06" - 3/4"	- 1.05"				- 100	- 50							
-4 -	-10	-	16.0 13.4 11.3	- 0.63"	BLES	medium	- 5/8" - 1/2" - 7/16"	525*				- 90 - 80	- 40	- 100 - 90						
3-	Ē	-	9.52 8.00 6.73	- 0.32"	PEBI		- 3/8" - 5/16" 265"	371*				- 70	- 30	- 80						
2-	-5	-	5.66 4.76 4.00	- 0.16"		fine	- 4	4 5				- 50	- 20	- 60	- 100					
	-3	-	3.36 2.83 2.38			fine Granules	- 6 - 7 - 8	6 7 8				- 40		- 50						
-1 -	-2	-	2.00 1.63 1.41	- 0.08" inches		very coarse	- 10 - 12 - 14 - 16	9 10 12 14				- 20		- 40	- 50					
0-	=1	-	1.00 .840 .707	- 1		coarse	- 18 - 20 - 25	- 16 - 20 - 24	- 1.2	72	6	-	- 10 - 9 - 8 - 7		- 40					
1-	5	-	.545 .500 .420	- 1/2	9		- 30 - 35 - 40	- 28 - 32 - 35	59	- 5.6	- 4.5	876	- 6	- 30	- 30					
2 -	3	-	.354 .297 .250	- 1/4	SAN	medium	- 45 - 50 - 60	- 42 - 48 - 60	42 30	- 15 - 43	- 13 - 35	- 4 2	- 4							
	2	-	.210			fine	- 70 - 80 - 100	- 65 - 80 - 100	215	- 120	- 91	- 2	- 2	- 20 — Mini	- 26 mum					
3 -	1	-	.125	- 1/8		very	- 120 - 140 - 170	- 115 - 150 - 170	155	- 350	- 240	1	- 1.0	(Inmar	n,1949)					
4-	- 05	-	.074	- 1/16		ine	- 200 - 230 - 270	- 200 - 250 - 270	080	- 2900	- 1700	0.5 0.329	- 0.5		_					
5-	04	-	.044 .037 .031	- 1/32		coarse	- 325 - 400	- 325				- 0.1		polity	no b					
	02		10000		F.	medium	differ e	oy as cale	ę		to I		(A)	he beg	ed, an					
6-	- 01	٦	.016	- 1/64	SIL	fine	ings d n scal	iffer b mm s	gular		gular sand	- 0.023	= 6xr	een th and th	above easure ors.					
7-		-	.008	- 1/128		verv	open ohi mn	ings d n phi	suban uartz (subang uartz	-0.0057	aw (R	sport a	r is m					
8-	005 004	_	.004	- 1/256		fine Clay/Silt	sieve from p	openi % fron	ded qui		es to : ded qu	-0.0014	kes L	elation trans	elocity othe					
9-	003 002	_	.002	- 1/512	CLAY	boundary for mineral analysis	e: Some slightly f	e: Sieve Ich as 2%	e: Applie subround (e: Applie subround	-0.00036	Sto	e: The re f traction	iat the ve					

REFERENCE: CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2010)

	e	Area Name	10-card	in diamond	Arrent Manage
aphic/	Symbol	Group Names	Grapt	nic/Symbol	Group Names
00	GW GP	Well-graded GRAVEL Well-graded GRAVEL with SAND Poorly-graded GRAVEL		a	Leon CLAY Leon CLAY with SAND Leon CLAY with GRAVEL SANDY leon CLAY SANDY leon CLAY GRAVELLY leon CLAY
	GN-GN	Well-graded GRAVEL with SLLT Well-graded GRAVEL with SLLT Well-graded GRAVEL with SLLT and SAND	á		GRAVELLY lean CLAY with SAND SILTY CLAY SILTY CLAY with SAND SILTY CLAY with GRAVEL
	G₩-GC	Well-graded GRAVEL with CLAY (or SLLY CLAY) Well-graded GRAVEL with CLAY and SAND (or SLLY CLAY and SAND)	8	CL-ML	SANDY SILIY CLAY with GRAVEL GRAVELLY SILIY CLAY GRAVELLY SILIY CLAY GRAVELLY SILIY CLAY with SAND
	GP-GN	Poorly-groded GRAVEL with SILT Poorly-groded GRAVEL with SILT and SAND		ы	SILT SILT with SAND SILT with GRAVEL SANDY SILT
2	GP-GC	Poorty-groded GRAVEL with CLAY (or SiLTY CLAY) Poorty-groded GRAVEL with CLAY and SAND for SiLTY CLAY and SAND)			GRAVELLY SILT WITH GRAVEL GRAVELLY SILT GRAVELLY SILT WITH SAND
GM GM	GM	SILTY GRAVEL SILTY GRAVEL with SAND	P	0.	ORGANIC IGON CLAY ORGANIC IGON CLAY WITH SAND ORGANIC IGON CLAY WITH GRAVEL SANDY ORGANIC IGON CLAY
1	GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND	Ø		SANDY ORGANIC LEON CLAY with CRAVEL GRAVELLY ORGANIC LEON CLAY GRAVELLY ORGANIC LEON CLAY with SAND
	GC-GN	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND	<u>}</u> }}	OL	ORGANIC SILT ORGANIC SILT with SAND ORGANIC SILT with GRAVEL SANDY ORGANIC SILT
	sw	Well-graded SAND Well-graded SAND with GRAVEL	ß		SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND
	SP	Poorly-groded SAND Poorly-groded SAND with GRAVEL		а	FOT CLAY with SAND Fot CLAY with GRAVEL Sandy fot Clay
	SN-SN	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL]	SANDY FOT CLAY WITH GRAVEL GRAVELLY FOT CLAY GRAVELLY FOT CLAY WITH SAND
	SW-SC	Well-orgeed SAND with CLAY (or Silty Clay) Well-orgeed SAND with CLAY and GRAVEL (or Silty Clay and GRAVEL)		мн	Elostic SILT Elostic SILT with SAND Elostic SILT with GRAVEL SANDY elostic SILT
	SP-SN	Poorly-groded SAND with SILT Poorly-groded SAND with SILT and GRAVE			SANDY Elostic SLT with GRAVEL GRAVELLY elostic SLT GRAVELLY elostic SLT with SAND
2	SP-SC	FOORLY-GROODED SAND with CLAY (or Silty CLAY) Poorly-grooded SAND with CLAY and GRAVEL (or Silty CLAY and GRAVEL)	P	ОН	ORGANIC TOT CLAY Organic fot clay with Sand Organic fot clay with grayel Sandy Organic fot clay
	SM	SILTY SAND SILTY SAND with GRAVEL	E		SANDY ORGANIC FOT CLAY WITH GRAVEL GRAVELLY ORGANIC FOT CLAY GRAVELLY ORGANIC FOT CLAY WITH SAND
1	sc	CLAYEY SAND CLAYEY SAND with GRAVEL	}}}	он	ORGANIC elostic SILT ORGANIC elostic SILT with SAND ORGANIC elostic SILT with GRAVEL SANDY ORGANIC elostic SILT
	SC-SN	SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL	88		SANDY ORGANIC CLOSTIC SILT with GRAVEL GRAVELLY ORGANIC CLOSTIC SILT GRAVELLY ORGANIC CLOSTIC SILT with SAND
55 55 55 55 55 55 55 55 55 55 55 55 55	PT	PEAT	I.S.	3 01 /04	ORGANIC SOLL ORGANIC SOLL with SAND ORGANIC SOLL with GRAVEL SANDY ORGANIC SOL
2		COBBLES COBBLES and BOULDERS BOULDERS	l'		SANDY ORGANIC SOLL WITH GRAVEL GRAVELLY ORGANIC SOLL GRAVELLY ORGANIC SOLL

TESTING												
6	Consolidation (ASTM D 2435)											
a	Collapse Potential (ASTM D 5333)											
œ	Compaction Curve (CTW 216)											
œ	Corrosivity Testing (CTw 643, CTw 422, CTw 417)											
0	Consolidated Undrained Triaxial (ASTN D 4767)											
05	Direct Sheor (ASTM D 3080)											
E	Exponsion Index (ASTM D 4829)											
۲	Moisture Content (ASTM D 2216)											
60	Organic Content-% (ASTN D 2974)											
℗	Permeability (CTN 220)											
PA	Porticle Size Analysis (ASTW D 422)											
PI	Plosticity Index (AASHTO T 90) Liquid Limit (AASHTO T 89)											
PL	Point Load Index (ASTM D 5731)											
90	Pressure Meter											
R	R-Value (CTM 301)											
Œ	Sand Equivalent (CTN 217)											
<u>se</u>	Specific Grovity (AASHTO T 100)											
શ્ચ	Shrinkage Limit (ASTM D 427)											
SW	Swell Potential (ASTM D 4546)											
œ	Unconfined Compression-Soil (ASTM D 2166) Unconfined Compression-Rock											
	(ASTM D 2938)											
	Unconsolidated Undrained Triaxial (ASTM D 2850)											
w	Unit Weight (ASTM D 4767)											

FIELD AND LABORATORY

DIST COUNTY HOUTE TOTAL PROJECT OF STREET TOTAL PROVIDE TOTAL PROJECT OF STREET OF ST

APPARENT DENSI	TY OF COHESIONLESS SOILS SPT N ₆₀ (Blows / 12 in.) 0 - 5									
Description										
Very Loose										
Loose	5 - 10									
Medium Dense	10 - 30									
Dense	30 - 50									
Very Dense	Greater than 50									

MOISTURE											
Description	Criteria										
Dry	No discernable moisture										
Moist	Moisture present, but no free water										
Wet	Visible free woter										

PERCENT OR PROPORTION OF SOILS										
Description	Criterio									
Trace	Particles are present but estimated to be less than 5%									
Few	5% - 10%									
Little	15% - 25%									
Some	30% - 45%									
Mostly	50% - 100%									

	PARTI	CLE SIZE
Des	cription	Size (in.)
Boulder		Greater than 12
Cobble		3 - 12
Connel	Coorse	3/4 - 3
Grover	Fine	1/5 - 3/4
	Coorse	1/16 - 1/5
Sand	Medium	1/64 - 1/16
	Fine	1/300 - 1/64
Silt and C	iay	Less than 1/300

spin Brown

ENGINEERING SERVIC	ES	QE	TECHNICAL SERVICE	8		STA	TE O		DIVI	ISION OF ENGINEERING SERVICES	541062 NO.	Pro	iect	t or	r St	truc	tur	a Na	me	_
PUNCTIONAL SUPERVISORI	C-EC4ED 871		FIELD INVESTIGATION BY		CALIFORNIA DEPARTMENT OF TRANSPORTATIO			NIA	DN	DESIGN BRANCH	POST WILL	L	LOG OF TEST BORING					s		
CS LOTS SOIL LECEND			73	NOTHE SCALE IN THOSES	; '	Ϊ.	ļ	' '	CU EA		DI SECURE PE			Т	~	105-5/1	ŤΤ	$\overline{\Box}$		17

1

Not 2014

Soil and Rock Logging, Classification, and Presentation Manual (2010) Erratum Sheet

Galtrans'

Common Bridge Foundation Types

Shallow Foundations – Spread or Slab

<u>Shallow Foundations</u> and bent walls have a Greater Scour and Flanking Risk, often requiring Countermeasures such as Rock Slope Protection (RSP)

Deep Water Foundations – Piles

- Deep water foundations transfer the load of the bridge and traffic into deeper layers of earth materials.
- Types of Deep-water foundations:
 - Driven piles
 - Drilled shafts

Deep Water Foundations – Drilling

Drilling (continued)

Dry Construction Method

Wet Construction Method

Drilling

- Drilling projects take longer than any other foundation type.
 - ~3 times longer than pile driving to construct bridges with drilled foundations.
 - Often multiple season bridge projects.
- If working in water, increased potential for drilling and equipment discharges to receiving waters.
- If drilling into fractured rock, potential for frac out.
- No casing to contain final concrete pour in areas where substrate is supersaturated.

Driven Piles

- H-beam piles often used for temporary access trestles piles, cofferdam shoring, and smaller bridge foundations.
 - 12"-16" H-beam
- Smaller Cast in Steel Shell (CISS) often used for temporary access trestle piles, smaller bridge foundations, and grouped in footing arrays.
 - 12" to 36" CISS piles
- Larger CISS piles Used for larger bridge foundations or areas of high liquefaction risk (seismicity).
 - 48" to 96" CISS piles

Vibratory Pile <u>Start</u>

- Piles can initially be vibrated into position.
 - At resistance, a hammer will drive the pile to TIP elevation.
- No <u>fish</u> hydroacoustic threshold for vibration (continuous).
 - Marine mammal thresholds apply.
- Consider potential of mechanized crushing of salmon and Steelhead redds.
- Depth achieved will vary between projects and pile locations in a project area based on;
 - Supersaturated soils
 - Substrate types
 - Pile type

Deep Water Foundations – Pile Driving

- Reduce risk of construction delays, pier anomalies, and long-term scour risk.
- Small bridges with pile driven foundations can typically be built in one season.
- Working during low flow season, in dewatered and isolated work areas can avoid or significantly minimize hydroacoustic impacts.
- Span the wet channel if possible
 - New bridges the most effective way to avoid and minimize underwater sound pressure during construction is by design.

Pile Driving on Land

Rock Shafts - Excavation and Low-Impact Blasting

Piers -Substructure

R

14 17

Terwer Creek, Tributary Klamath River

(Remove bent wall, replace with round pier)

Support - Conventional Cast in Place Bridge Construction

FMC Link-B

Foundations constructed by conventional methods.

Accelerated Bridge Construction (Abutments)

Photos: Dorie Mellon, ABC Structures Engineer

ABC Element Assembly (Wingwalls, Voided Slab, Rails and Aesthetics)

Photos: Dorie Mellon, ABC Structures Engineer

Connections – Ultra High-Performance Concrete (UHPC)

- Strong, flexible, durable, excellent bond for ABC connections
- Performance exceeds conventional concrete

Caltrans

 At 70 degrees, UHPC can cure in ~4 days as compared to 7-10 days for conventional concrete.

Photos: Dorie Mellon, ABC Structures Engineer

Small Watersheds – Removing a Culvert and Building a Bridge

Dewatering, Access Traffic

Salmon and Steelhead were safely relocated from the work area

during the water diversion and early construction activities.

Reinforced Concrete Box Culvert to Small Bridge – Fish Passage Remediation

Staged and Half Width Construction

Photos: Jim McIntosh, Environmental Construction Liaison

Larger Bridge Access – Construction and Traffic

Hydroacoustic Impacts to Fish and Aquatic Species

West Coast fish kills 2000-2003

- In 2000 test piles were impact driven for SFOBB, to analyze foundation construction and performance.
 - In water, unattenuated 72-inch and 96-inch Steel Shell Pipe Piles
- Around that same time similar fish kills were observed during pile driving in Canada, and Washington State.

Species Killed

Salmon Green sturgeon Cod Herring Anchovies Sardines Sardines Smelt Surf perches Striped bass Rockfishes

Severe Barotrauma Injury (mortality)

Typical Underwater Sound Pressure Levels

Sound Source	Sound Pressure Levels						
	dB	Pascals					
High explosives at 100 meters	220	100,00					
Air gun array at 100 meters							
Un-attenuated 24" steel pipe piles at 10 meters	200	10,000					
Un-attenuated 12" H-beam piles at 10 meters	180	1,000					
Large ship at 100 meters	160	100					
Fish trawler (low speed) at 20 meter	140	10					
Background with small boat traffic	100	0.1					
	80	0.01					

2008 Interim Pile Driving Criteria

In 2008 the Fisheries Hydroacoustic Working Group (FHWG) agreed on interim criteria. Minimal science and data available at the time so conservative levels were agreed upon by agencies involved; Caltrans, FHWA, NMFS, WSDOT, ODOT, and CDFW.

- Peak Sound Pressure Level (SPL)
 - 206 dB for all sizes of fish
- Accumulated Sound Elevation Level (cSEL)
 - **187 dB** fish two grams or greater
 - 183 dB fish less than two grams
- 150 dB Effective Quiet(RMS) assumed background levels

Note; the FHWG disbanded in 2018 due to members retiring, taking other positions, and lack of interest.

4/7/2021

47

Galtrans.

Peak Sound Pressure Level: Maximum absolute value of the instantaneous sound pressure that occurs during a specified time interval (ANSI S12.7)

Sound Pressure Level: Measure of the square root of mean square (RMS) pressure. For impulses, the average of the squared pressures over the time that comprise that portion of the waveform containing from 5% to 95% percent of the "effective" sound energy of the impulse.

1-49

Barotrauma Continuum of Effects

Caltrans

Marine Mammals

2018 Revision to:

Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0)

Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts

Office of Protected Resources National Marine Fisheries Service Silver Spring, MD 20910

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service

NOAA Technical Memorandum NMFS-OPR-59 April 2018

Hydroacoustic Effects of Pile Driving on Fish

- Originally published in 2009, updated 2012, 2015 and 2020.
- 2020 "Technical Guidance for Assessment & Mitigation of the Hydroacoustic Effects of Pile Driving on Fish"
 - ICF, Caltrans, Illingworth and Rodkin.
- <u>http://www.dot.ca.gov/hq/env/bio/fisheries_bio</u> <u>acoustics.htm</u>

Guidance Manual Contents

- Chapter 2 Fundamentals of Hydroacoustics
 - Underwater Sound Propagation and Sound Levels
 - Common Attenuation Measures and Effectiveness
- Chapter 3 Impacts to Fish
 - Effects of Pile Driving on Fish and Life History Considerations
 - Behavioral Effects and Environmental Factors to Consider
 - Methods for calculating underwater noise levels from pile driving
- Appendix I Compendium of Pile Driving Sound Data
- Appendix IV Tools for Preparing Biological Assessment

Sound Pressure Transmission Loss in Water

- Transmission loss;
 - In water ~4.5 dB/doubling of distance
- Attenuation of <u>in-water</u> pile driving is reasonable, feasible and should be a component of in-water pile driving projects.

Project Title	Example River Bridge - Permanent Foundation Piles					Size or Diameter	Project	Location	Hammer Type	Water Depth	Distance	Peak	RMS	SEL	Comments	
Pile information (size, type,	24- inch Steel Shell Pipe Piles, Diesel Impact (Delmag D46-32), Excavated and dewatered coffer dam used						5th Street Bridge		APE D62		10m	209	183	170		
number, pile strikes, etc.)						22-inch	Temporary Tresstle Piles	Yuba City, CA	Diesel Impact	1.5-2m	200m	171	146	136	No Attenuation shallow river bed	
	for permane	ent foundatio	on, in-water	pile driving.		24-inch	24-inch Rodeo Dock Repair F 24-inch Battered 24-inch Amorco Wharf Repair	Francisco Bay, CA	Diesel Impact	~5m	10m	203	189	178	Dock repair in San Francisco Bay	
	Estimates st	rikes per pile	e = 1.250. Th	e project	Steel Pipe	24-inch			(Delmag D36-32)		50m	191	178	167		
	proposes to	drive 3 niles	ner dav = 3	750	Steel Pipe	Battered		Martinez, CA -	Diesel Impact	>12m	10m	207	194	178	Attenuated pile driving for the construction of new dolphins for oil tanker wharf in Benicia Straits. Because of the currents and deploymer	
	proposes to drive 5 price per day = 5,750.				-	Vertical	•	Carquinez Straits	•	>12m	10m	205	190	175	of the bubble curtains the bubble curtain were not very effective	
							Russian River		Diesel Impact		15m	197	185	173	Emergency bridge repair for the Russian River during rainy season	
					Steel Pipe	Steel Pipe 24-inch Gey		orary Geyserville - Russian River, CA	¹ (Delmag D46-32)	Land-based	35m	186	174	163	when river was near flood stage. These were temporary trestle piles	
Fill in green cells: estimated sound levels and	distances at	which they w	/ere measured	d. estimated			CALTRANS				70m	175	163	NA	driven on land adjacent to water through saturated soils.	
umber of pile strikes per day, and transmission loss constant.					Steel Pine	24 inch	Tounge Point Pier	Astoria, Oregon	Diesel Impact	+4m	10m	205	188	173	Permanent piles driven through holes in the existing pier. Measurements were part of a test of the effectiveness of a hubble ring	
					Succript		Astoria, Or	Columbia River	D-46		20m 19		180	162	system	
		A.cou	ctic Motric		Steel pipe	24-inch	Cleer Creek WWTP	Redding,CA	Diesel Impact	<1m	10m	182		159	Temporary trestle piles that were struck between 18 and 24 blows to	
	Deat	ACOU						Sacramento River	D-42		20m	1/4	139		Verny men oearing.	
	Peak	SEL	RMS	Effective Quiet	Steel pipe	24-inch	SR 520 Test Pile Project	Seattle, WA Portage Bay	Disel Impact	3-7m	10m	195	176	164	Levels at the 200 meter and 500 meter location were not valid due to high background levels (waves slapping on the boat and raft)	
Veasured single strike level (dB)	205	175	190	150			Portland-Milwaukie	Portland, OR	Diesel Impact		10m	200		172		
Distance (m)	10	10	10		Steel pipe	24-inch	Light Rail Project	Willamette River		4m	158m	182		157	l'emporary trestie piles driven as part of a bubble on/off test.	
					Steel Pipe	24-inch	Port of Coeyman	Coeyman, NY	Diesel Impact	3-4m	10m	209	181	176		
Estimated number of strikes	3750				1						~50m 13m	200	188			
					1						30m	198	179			
Cumulative SEL at measured distance							h Schuyler Heim Bridge	Long Posch CA		5 1.5-12m	125m	194	171		At the distance locations on the final day of testing, monitoring was	
culturative SEL at Illeasured distance					Steel Shell	24-inch		Cerritos Channel	Diesel Impact D-36		250m	179	158		depth; the data presented here represents mid-depth results only, but	
210.74					1						356m	174	152		results at both depths are provided in the final report.	
		Distance (m) to thresh	old							460m	176	147			
	Onse	t of Physical	Injury	Behavior	l						500m	208	147	173		
	Peak	Cumulati		RMS		eel Shell 24-inch	24-inch Northern Rail Extension	Salcha, AK Tanana River	Diesel Impact		15m	198		166	Data was taken for impact and vibratory pile driving; the values here	
		Fich > 2 a	Eich < 2 c		Steel Shell				na River D.46	<1 m	25m	180 1		145	reflect the peak sound pressure level for both tests, but the rate was calculated for the impact results only.	
	aв	FISH 2 Z g	Fish < 2g	dВ					2-10		40m	178		147		
ransmission loss constant (15 if unknown)	206	187	183	150	Steel Shell	24-inch	Northern Rail Extension	Salcha, AK	Vibratory	<1m	10m	184		159	Data was taken for impact and vibratory pile driving; the values here reflect the peak sound pressure level for both tests, but the rate was	
15	9	383	464	4642				I anana River	APE 200		20m	170		149	calculated for the impact results only.	
										A						
** This calculation assumes that single strike SELs < 150 dB to not accumulate the cause injury					Technical Guida	ance for the A	ssessment of the									
This calculation assumes that single strike sizes < 150 up de not accumulate treduse injuly					Hydroacoustic E	ffects of Pile	Driving on Fish					1.6				

Notes (source for estimates, etc.)

Amorco Wharf project in Martinez CA was selected for comparison datable to proximity of the proposed project with likely similar substrate, as well as the same pile type and size. Pries at Amorco were attenuated by use of an air bubble curtain, while the permanent footing array for these 24" CISS foundation piles will be isolated from the wet channel and contained within an excavated and dewatered coffer dam. Due to these circumstances, similar levels of attenuation are anticipated.

NMFS Tool Hydroacoustic Analysis Caltrans Hydroacoustic Compendium Summary tables are useful to help determine appropriate comparison projects; http://www.dot.ca.gov/hq/env/bio/fisheries_bioacoustics.htm

Estimated distance is a surrogate for fish populations anticipated to occur in the area during construction.

	County	الم معلم الملغ	River/Stream Name:	Cal Diver	
	oounty.	Humbolat	Nively ou call Harre.		
Caltrans	Route:	101	Pile ID(s):	36 Inch Steel Pipe Piles	
	Postmile:	56.7	Placement:	In Water	On Land
Innut					
mput					
					•
		Туре	Size (in)	Piles Driven Per Day	
	Pile	Steel Pipe	36	2	
					-
		Water Depth (ft)	Distance from Wetted Channel (ff)		
	Placement	30	Summer ()	4	
	Flavenien	30]	
		Denth to Engl (6)	т		
	TID alough an	Depth to final (it)	ł		
	TIP elevation	40	ļ		
		_	-		
		Туре			
	Sediment	Soft			
				_	
		Туре	db]	
	Attenuation	Coffer Dam	5	1	
			I	4	
Additional	Comments/Notes:				
Cummony (Dilo)					
Summary (File)					
1					
36 inch Steel Pipe driven in	30 feet of water to	FIP elevation of 40 feet in Soft se	ediment. with 5 db of attenuation	n from Coffer Dam attenuation tv	be used. Assumes area is
executed and downtored				,	
excavated and dewatered.				,	
excavated and dewatered.					
Output					
Output				,	
Output			Acousti	in Matria	
Output			Acousti	ic Metric	
Output		Peak	Acousti SEL	ic Metric RMS	Effective Quiet
Output Measured sing	le strike level (dB)	Peak 205	Acousti SEL 178	ic Metric RMS 188	Effective Quiet
Output Measured sing	le strike level (dB) Distance (m)	Peak 205 10	Acousti SEL 178 10	ic Metric RMS 188 10	Effective Quiet
Output Measured sing	le strike level (dB) Distance (m)	Peak 205 10	Acousti SEL 178 10	ic Metric RMS 188 10	Effective Quiet 150
Output Measured sing	le strike level (dB) Distance (m)	Peak 205 10	Acousti SEL 178 10	ic Metric RMS 188 10	Effective Quiet 150
Output Measured sing	le strike level (dB) Distance (m)	Peak 205 10 201 01	Acousti SEL 178 10	ic Metric RMS 188 10	Effective Quiet 150
Measured sing	le strike level (dB) Distance (m) neasured distance	Peak 205 10 201.01	Acousti SEL 178 10	ic Metric RMS 188 10	Effective Quiet 150
Measured sing Cumulative SEL at n Transmis	le strike level (dB) Distance (m) neasured distance sion loss constant	Peak 205 10 201.01 15	Acousti SEL 178 10	ic Metric RMS 188 10	Effective Quiet 150
Measured sing Cumulative SEL at n Transmiss Estimated	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes	Peak 205 10 201.01 15 200	Acousti SEL 178 10	ic Metric RMS 188 10	Effective Quiet 150
Measured sing Cumulative SEL at n Transmise Estimated	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes	Peak 205 10 201.01 15 200	Acousti SEL 178 10	ic Metric RMS 188 10	Effective Quiet 150
Output Measured sing Cumulative SEL at n Transmiss Estimated	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes	Peak 205 10 201.01 15 200	Acousti SEL 178 10 Onset of Physical Injury	ic Metric RMS 188 10	Effective Quiet 150 Behavior
Measured sing Cumulative SEL at n Transmise Estimated	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes	Peak 205 10 201.01 15 200	Acousti SEL 178 10 Onset of Physical Injury Cumula	ic Metric RMS 188 10 tive SEL	Effective Quiet 150 Behavior
Measured sing Cumulative SEL at n Transmise Estimated	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes	Peak 205 10 201.01 15 200 Peak	Acousti SEL 178 10 0nset of Physical Injury Cumula Fish 2 g	ic Metric RMS 188 10 tive SEL Fish < 2 a	Effective Quiet 150 Behavior RMS
Output Measured sing Cumulative SEL at n Transmiss Estimated	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB	Peak 205 10 201.01 15 200 Peak 208	Acousti SEL 178 10 Onset of Physical Injury Cumula Fish ≥ 2 g	ic Metric RMS 188 10 tive SEL Fish < 2 g 183	Effective Quiet 150 Behavior RMS
Output Measured sing Cumulative SEL at n Transmiss Estimated	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB	Peak 205 10 201.01 15 200 Peak 206 0	Acousti SEL 178 10 Onset of Physical Injury Cumula Fish ≥ 2 g 187 96	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 160	Effective Quiet 150 Behavior RMS 150 2415
Output Measured sing Cumulative SEL at n Transmise Estimated Distance (m) to th	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth)	Peak 205 10 201.01 15 200 Peak 208 9	Acousti SEL 178 10 0nset of Physical Injury Cumula Fish ≥ 2 g 187 86	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 159	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmis: Estimated Distance (m) to th	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes number of strikes dB rreshold (isopleth)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 0nset of Physical Injury Cumula Fish ≥ 2 g 187 86	tive SEL Fish < 2 g 159	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmiss Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 208 9	Acousti SEL 178 10 10 Onset of Physical Injury Cumula Fish ≥ 2 g 187 88	tive SEL Fish < 2 g 159	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmiss Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 0nset of Physical Injury Cumula Fish ≥ 2 g 187 86	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 159	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmise Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 0nset of Physical Injury Cumula Fish ≥ 2 g 187 86	ic Metric RMS 188 10 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmiss Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB areshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 10 Onset of Physical Injury Cumula Fish ≥ 2 g 187 86 ↓	ic Metric RMS 188 10 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmiss Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 Onset of Physical Injury Cumula Fish≥2 g 187 86 ↓	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 160 3415
Output Measured sing Cumulative SEL at n Transmise Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 0nset of Physical Injury Cumula Fish ≥ 2 g 187 86	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmiss Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 0 Onset of Physical Injury Cumula Fish ≥ 2 g 187 86 ↓	ic Metric RMS 188 10 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmiss Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 Onset of Physical Injury Cumula Fish≥ 2 g 187 86 ↓	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmise Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 0nset of Physical Injury Cumula Fish ≥ 2 g 187 86	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415 ↓
Output Measured sing Cumulative SEL at n Transmis: Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB reshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 Onset of Physical Injury Cumula Fish ≥ 2 g 187 86	ic Metric RMS 188 10 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Transmiss Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB rreshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 206 9	Acousti SEL 178 10 Onset of Physical Injury Cumula Fish≥2 g 187 86 ↓	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415
Output Measured sing Cumulative SEL at n Cumulative SEL at n Transmise Estimated Distance (m) to th Summary (Isople	le strike level (dB) Distance (m) neasured distance sion loss constant number of strikes dB areshold (isopleth) th Impacts)	Peak 205 10 201.01 15 200 Peak 208 9 9	Acousti SEL 178 10 Onset of Physical Injury Cumula Fish ≥ 2 g 187 86	ic Metric RMS 188 10 tive SEL Fish < 2 g 183 159 ↓	Effective Quiet 150 Behavior RMS 150 3415 ↓

California Hydro-Acoustic Team (CHAT)

- Initiated in 2020
- Working on the Caltrans Compendium Tool
 - $\circ~$ Database of hydroacoustic monitoring data
 - Automatically selects comparison project based on project design and sampling information;
 - Pile type and size,
 - Position in wet channel or distance from wet channel,
 - Depth to final TIP elevation, and
 - Sediment type using a gradation analysis for categorization
- Pile strike analysis is ongoing to inform strike data for varied pile types, sizes, and substrate categories
- Drop-down selection for attenuation type
- A summary will generate for calculated areas and impacts for the Peak, accumulative SEL, and RMS distances.

Avoid and Minimize Underwater Sound Pressure

- Design Bridges to span waterways so pile driving can occur on land.
- If driving piles in water, use appropriate attenuation methods to include coffer dams, or bubble curtains, to disrupt or create discontinuity of the pressure wave.
- Start piles using vibratory methods to minimize total accumulative strikes needed.

Attenuation

Isolation casings used to attenuate H-beam or other small piles

Must be annular gap of air to achieve reduction.

~ 1-3 dB of reduction

Bubble Curtain

- Requires generator(s) to pump air into frame
- Water/air density discontinuity attenuates pressure wave
- Cost-effective and relatively easy to deploy
- Average attenuation when properly designed and implemented **~6 to 8 dB** reduction.
- Unconfined best in low currents
- Additional rings needed in deeper water

Cofferdams – Isolation and Attenuation

Dewatering and Isolation

Fish Exclusion - Netting Causes Mortality

Underwater Monitoring

- Monitoring is needed to verify underwater sound pressure estimates for project impacts
- Improve data and estimates for future projects
- More data and observations for understanding of hydroacoustic species impacts

Photo: James Reyff – Illingworth & Rodkin

Measurement Systems

- Hydrophones
- Signal conditioning
- Signal processing
- Recording
- Descriptors

Qualified Oversighting Data Collection

Nilly and and

SFOBB Demo - Pier E3, Largest deep-water pier

Species Avoidance and Minimization

- Seasonal work windows
- Bubble curtain attenuation
- Biological monitors
- Caged fish study (2004, 2016)

*Green boxes when species are not present or expected at lower densities.

	J	F	М	Α	м	J	J	Α	S	0	Ν	D
Harbor Seal												
California Sea Lion												
Elephant Seal												
Gray Whale												
Longfin Smelt												
Northern Anchovy												
Pacific Herring												
Chinook Salmon ¹												
Pacific Sardine												
Green Sturgeon ²												
Nesting Birds												
Diving Birds												

 $^{1}_{\sim}$ Juvenile Chinook salmon densities around Pier E3 are low (highest value of 0.25 individuals/10,000 sq. meters in May).

² Green sturgeon have potential to occur around Pier E3 year-round, but in very low densities.

SFOBB – 2016/17 Low Impact Blasting - Demolition

Hydroacoustic Research

- Houghton et al. (2010)
- Exposed 133 caged juvenile Coho salmon to pile driving.
 - Distance: 1-50 meters from source.
 - PEAK as high as 195 dB
 - cSEL as high as 191 dB
- No mortalities or tissue damage from barotrauma reported as late as 48 hours post exposure.

Research – Hydroacoustic Impacts on Fish from Pile Driving

- Halvorsen et al. (2011), Univ. of Maryland
- Chinook salmon, size: ~ 103mm length, average 11.8 grams.
- Test used high intensity pile driving sound pressure in a lab setting (wave tube).
 - Average PEAK SPL 199-213 dB
 - Average SEL_{cum} 204-219 dB
- Post-exposed fish were euthanized and examined for external and internal injury.

Sound Exposure Guidelines for Fishes and Sea Turtles - Popper et al. (2014)

SPRINGER BRIEFS IN OCEANOGRAPHY

Arthur N. Popper • Anthony D. Hawkins • Richard R. Fay David A. Mann • Soraya Bartol • Thomas J. Carlson Sheryl Coombs • William T. Ellison • Roger L. Gentry Michele B. Halvorsen • Svein Løkkeborg • Peter H. Rogers Brandon L. Southall • David G. Zeddies • William N. Tavolga

ASA S3/SC1.4TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles:

A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI Endangered Species Acts (ESA), recoverable injury is not consistent or in compliance with the Federal Endangered Species Act (FESA) definition, or the California Endangered Species Act (CESA) definitions of *take*;

Assume mortality at the onset of physical injury, even those deemed "recoverable".

Peak = increase by 1 dB to 207

cSEL = increase to 203 cSEL

Table 7.3 Pile driving. Data on mortality and recoverable injury are from Halvorsen et al. (2011, 2012a, c) based on 960 sound events at 1.2 s intervals. TTS based on Popper et al. (2005). See text for details. Note that the same peak levels are used both for mortality and recoverable injury since the same SEL_{∞} was used throughout the pile driving studies. Thus, the same peak level was derived (Halvorsen et al. 2011).

	Mortality and	Impairment			
Type of Animal	potential mortal injury	Recoverable injury	TTS	Masking	Behavior
Fish: no swim bladder (particle motion detection)	>219 dB SEL _{cum} or >213 dB peak	>216 dB SEL _{eum} or >213 dB peak	>>186 dB SEL _{cum}	(N) Moderate (I) Low (F) Low	(N) High (I) Moderate (F) Low
Fish: swim bladder is not involved in hearing (particle motion detection)	210 dB SEL _{com} or >207 dB peal	203 dB SEL _{cum} or >207 dB peak	•186 dB SEL _{cum}	(N) Moderate (I) Low (F) Low	(N) High (I) Moderate (F) Low
Fish: swim bladder involved in hearing (primarily pressure detection)	207 dB SEL _{cum} or >207 dB peak	203 dB SEL _{eum} or >207 dB peak	186 dB SEL _{eum}	(N) High (I) High (F) Moderate	(N) High (I) High (F) Moderate
Sea turtles	210 dB SEL _{cum} or >207 dB peak	(N) High (I) Low (F) Low	(N) High (I) Low (F) Low	(N) High (I) Moderate (F) Low	(N) High (I) Moderate (F) Low
Eggs and larvae	>210 dB SEL _{cum} or >207 dB peak	(N) Moderate (I) Low (F) Low	(N)Moderate (I) Low (F) Low	(N) Moderate (I) Low (F) Low	(N) Moderate (I) Low (F) Low

Notes: peak and rms sound pressure levels dB re 1 μ Pa; SEL dB re 1 μ Pa²-s. All criteria are presented as sound pressure even for fish without swim bladders since no data for particle motion

- In 2017, pooled-fund study initiated by WSDOT.
 - Oregon DOT, Caltrans, and FHWA also contributed.
- Inventory and summarize post-2008 research to consider underwater sound pressure levels that cause mortality, injury, and harm. Findings;
 - Agree that Interim thresholds are protective of fish but that the cSEL is consistent with TTS, not injury.
 - Reiterate 2014 guidelines in support of needed updates.
 - Outline deficiencies of XL analysis tool, such as substrate type, strike estimates, and water depth.
- Identify particle motion research needed to determine potential effects on fish.

Anthropogenic Sound and Fishes

WA-RD 891.1 Arthur N. Popper Anthony D. Hawkins Michele B. Halvorsen

February 2019

Recommended Training and Education for Bridge Elements, Foundations Design, Watershed and Hydroacoustic Analysis <u>www.cafishpac.org/training</u>

- Basic Bridge Components Ryan Stiltz, Caltrans Senior Bridge Engineer (<u>https://vimeo.com/397674263</u>)
- Geotechnical Investigations and Foundations Design Hector Valencia, Caltrans Senior Geotechnical Engineer (<u>https://vimeo.com/397665887</u>)
- Intersection of Fluvial Processes, Fish Passage, and Road Stream Crossings John Wooster, NOAA Fisheries Fluvial Geomorphologist (<u>https://vimeo.com/397667601</u>)
- Environmental Advantages of Accelerated Bridge Design (ABC) Dorie Mellon, Senior Bridge Engineer ABC Policy (<u>https://vimeo.com/397662964</u>)
- Pre-Design Fish Passage Bridges Doug Menzmer, Caltrans Senior Bridge Engineer (<u>https://www.cafishpac.org/training</u>)
- Software for Road Stream Crossings and Fish Passage Analysis and Design Rick Macala, CDFW Senior Fish Passage Engineer (<u>https://www.cafishpac.org/training</u>)
- Evaluating and Monitoring the Effects of Impact Pile Driving on Fish David Buehler, ICF Principal, Acoustic Engineer (<u>https://vimeo.com/397662555</u>)
- San Francisco-Oakland Bay Bridge-Case Study Brian Maroney, SFOBB Chief Engineer, and Stefan Galvez, Caltrans District Principle Environmental Planner (<u>https://vimeo.com/397674502</u>)
- Considerations for Design and Implementation of Bridges in Sensitive Biological Habitats Gudmund Setberg, Caltrans Structures Deputy, State Bridge Engineer (<u>https://vimeo.com/397665372</u>)
- Stream and River Diversions Minimizing Impacts During Diversions, Dewatering, and Species Relocation Mike Kelly, NOAA Fisheries Biologist (<u>https://vimeo.com/397672952</u>)

Mentors, Teachers, and Colleagues – Thank you!

- Structures/Geotech Ryan Stiltz, Doug Menzmer, Gudmund Setberg, Dorie Mellon, Dan Adams, Steve Mellon, Brian Maroney, Hector Valencia, Ron Richmond, June James, Charlie Narwold, Hernan Perez, Tom Song, Tog Nordstrom
- **Construction** Sebastian Cohen, Tom Fitzgerald
- Hydroacoustics David Buehler, Bruce Rymer, David Woodbury, Dr. John Stadler, Marion Carey, Jimmy Walth

Photos: Kristine Pepper

Melinda Molnar, Senior Fish Biologist Caltrans Office of Biology and Innovation <u>Melinda.Molnar@dot.ca.gov</u>, ph. 916.247.8555